Publications (2022)


1. Garland, B. M.; Fairley, N.; Strandwitz, N. C.; Thorpe, R.; Bargiela, P.; Baltrusaitis, J. A study of in situ reduction of MoO3 to MoO2 by X-ray Photoelectron Spectroscopy. Appl. Surf. Sci. 2022, 598, 153827. (https://doi.org/10.1016/j.apsusc.2022.153827)

2. Chang, C.-W.; Borne, I.; Lawler, R. M.; Yu, Z.; Jang, S. S.; Lively, R. P.; Sholl, D. S. Accelerating Solvent Selection for Type II Porous Liquids. J. Am. Chem. Soc. 2022, 144, 4071-4079. (https://doi.org/10.1021/jacs.1c13049)

3. Zhang, X.; Maddock, J.; Nenoff, T. M.; Denecke, M. A.; Yang, S.; Schröder, M. Adsorption of iodine in metal–organic framework materials. Chem. Soc. Rev. 2022, 51, 3243-3262. (https://doi.org/10.1039/D0CS01192D)

4. Rimsza, J. M.; Henkelis, S. E.; Rohwer, L. E. S.; Sava Gallis, D. F.; Nenoff, T. M. Crystal Prediction and Design of Tunable Light Emission in BTB-Based Metal-Organic Frameworks. Adv. Opt. Mater. 2022, 10, 2200058. (https://doi.org/10.1002/adom.202200058)

5. Pu, T.; Chen, J.; Tu, W.; Xu, J.; Han, Y.-F.; Wachs, I. E.; Zhu, M. Dependency of CO2 methanation on the strong metal-support interaction for supported Ni/CeO2 catalysts. J. Catal. 2022, 413, 821-828. (https://doi.org/10.1016/j.jcat.2022.07.038)

6. Christian, M. S.; Nenoff, T. M.; Rimsza, J. M. Discovery of Complex Binding and Reaction Mechanisms from Ternary Gases in Rare Earth Metal–Organic Frameworks. Chem. - Eur. J. 2022, 28, e202201926. (https://doi.org/10.1002/chem.202201926)

7. Chen, C.; Yu, Z.; Sholl, D. S.; Walton, K. S. Effect of Loading on the Water Stability of the Metal–Organic Framework DMOF-1 [Zn(bdc)(dabco)0.5]. J. Phys. Chem. Lett. 2022, 13, 4891-4896. (https://doi.org/10.1021/acs.jpclett.2c00693)

8. Guo, M.; Mosevitzky Lis, B.; Ford, M. E.; Wachs, I. E. Effect of redox promoters (CeOx and CuOx) and surface sulfates on the selective catalytic reduction (SCR) of NO with NH3 by supported V2O5-WO3/TiO2 catalysts. Appl. Catal., B 2022, 306, 121108. (https://doi.org/10.1016/j.apcatb.2022.121108)

9. Sholl, D. S.; Lively, R. P. Exemplar Mixtures for Studying Complex Mixture Effects in Practical Chemical Separations. JACS Au 2022, 2, 322-327. (https://doi.org/10.1021/jacsau.1c00490)

10. Li, D.; Xu, F.; Tang, X.; Dai, S.; Pu, T.; Liu, X.; Tian, P.; Xuan, F.; Xu, Z.; Wachs, I. E., et al. Induced activation of the commercial Cu/ZnO/Al2O3 catalyst for the steam reforming of methanol. Nat. Catal. 2022, 5, 99-108. (https://doi.org/10.1038/s41929-021-00729-4)

11. Cui, K.; Nair, S.; Sholl, D. S.; Schmidt, J. R. Kinetic Model of Acid Gas Induced Defect Propagation in Zeolitic Imidazolate Frameworks. J. Phys. Chem. Lett. 2022, 13, 6541-6548. (https://doi.org/10.1021/acs.jpclett.2c01516)

12. Thyagarajan, R.; Sholl, D. S. Molecular Simulations of CH4 and CO2 Diffusion in Rigid Nanoporous Amorphous Materials. J. Phys. Chem. C 2022, 126, 8530-8538. (https://doi.org/10.1021/acs.jpcc.2c01609)

13. Jiang, X.; Zhang, X.; Purdy, S. C.; He, Y.; Huang, Z.; You, R.; Wei, Z.; Meyer, H. M., III; Yang, J.; Pan, Y., et al. Multiple Promotional Effects of Vanadium Oxide on Boron Nitride for Oxidative Dehydrogenation of Propane. JACS Au 2022, 2, 1096-1104. (https://doi.org/10.1021/jacsau.1c00542)

14. Wachs, I. E. Number of surface sites and turnover frequencies for oxide catalysts. J. Catal. 2022, 405, 462-472. (https://doi.org/10.1016/j.jcat.2021.12.032)

15. Shade, D.; Bout, B. W. S.; Sholl, D. S.; Walton, K. S. Opening the Toolbox: 18 Experimental Techniques for Measurement of Mixed Gas Adsorption. Ind. Eng. Chem. Res. 2022, 61, 2367-2391. (https://doi.org/10.1021/acs.iecr.1c03756)

16. Rimsza, J. M.; Nenoff, T. M. Porous Liquids: Computational Design for Targeted Gas Adsorption. ACS Appl. Mater. Interfaces 2022, 14, 18005-18015. (https://doi.org/10.1021/acsami.2c03108)

17. Zabilska, A.; Clark, A. H.; Moskowitz, B. M.; Wachs, I. E.; Kakiuchi, Y.; Copéret, C.; Nachtegaal, M.; Kröcher, O.; Safonova, O. V. Redox Dynamics of Active VOx Sites Promoted by TiOx during Oxidative Dehydrogenation of Ethanol Detected by Operando Quick XAS. JACS Au 2022, 2, 762-776. (https://doi.org/10.1021/jacsau.2c00027)

18. Rosu, C.; Narayanan, P.; Leisen, J. E.; Jones, C. W. Sequential polymer infusion into solid substrates (SPISS): Impact of processing on sorbent CO2 adsorption properties. Sep. Purif. Technol. 2022, 292, 121042. (https://doi.org/10.1016/j.seppur.2022.121042)

19. Metz, P. C.; Ryder, M. R.; Ganesan, A.; Bhattacharyya, S.; Purdy, S. C.; Nair, S.; Page, K. Structure Evolution of Chemically Degraded ZIF-8. J. Phys. Chem. C 2022, 126, 9736-9741. (https://doi.org/10.1021/acs.jpcc.2c02217)

20. Guo, M.; Mosevitzky Lis, B.; Ford, M. E.; Wachs, I. E. The effect of non-redox promoters (AlOx, POx, SiOx and ZrOx) and surface sulfates on supported V2O5 - WO3/TiO2 catalysts in selective catalytic reduction of NO with NH3. Appl. Catal., B 2022, 306, 121128. (https://doi.org/10.1016/j.apcatb.2022.121128)

21. Lyndon, R.; Wang, Y.; Walton, I. M.; Ma, Y.; Liu, Y.; Yu, Z.; Zhu, G.; Berens, S.; Chen, Y.-S.; Wang, S. G., et al. Unblocking a rigid purine MOF for kinetic separation of xylenes. Chem. Comm. 2022, 58, 12305-12308. (https://doi.org/10.1039/D2CC04387D)

22. Sarswat, A.; Sholl, D. S.; Lively, R. P. Achieving order of magnitude increases in CO2 reduction reaction efficiency by product separations and recycling. Sustainable Energy Fuels 2022, 6, 4598-4604. (https://doi.org/10.1039/D2SE01156E)

23. Moran, C. M.; Joshi, J. N.; Feininger, H. P.; Walton, K. S. Reversible synthesis of structured MOF-to-metal oxide nanorods. CrystEngComm 2022, 24, 6309-6314. (https://doi.org/10.1039/D2CE00969B)

24. Cao, X.; Pu, T.; Lis, B. M.; Wachs, I. E.; Peng, C.; Zhu, M.; Hu, Y. Controlling the Reconstruction of Ni/CeO2 Catalyst during Reduction for Enhanced CO Methanation. Engineering 2022, 14, 94-99. (https://doi.org/10.1016/j.eng.2021.08.023)

25. Wachs, I. E. Progress in catalysis by mixed oxides: From confusion to catalysis science. Catal. Today 2022. (https://doi.org/10.1016/j.cattod.2022.08.025)

26. Gharagheizi, F.; Yu, Z.; Sholl, D. S. Curated Collection of More than 20,000 Experimentally Reported One-Dimensional Metal–Organic Frameworks. ACS Appl. Mater. Interfaces 2022, 14, 42258-42266. (https://doi.org/10.1021/acsami.2c12485)

27. Christian, M. S.; Fritzsching, K. J.; Harvey, J. A.; Sava Gallis, D. F.; Nenoff, T. M.; Rimsza, J. M. Dramatic Enhancement of Rare-Earth Metal–Organic Framework Stability Via Metal Cluster Fluorination. JACS Au 2022, 2, 1889-1898. (https://doi.org/10.1021/jacsau.2c00259)

28. Kojima, S.; Park, J.; Carter, E. A.; Walton, K. S.; Realff, M. J.; Sholl, D. S.; Yajima, T.; Fujiki, J.; Kawajiri, Y. Discrepancy quantification between experimental and simulated data of CO2 adsorption isotherm using hierarchical Bayesian estimation. Sep. Purif. Technol. 2022, 296, 121371. (https://doi.org/10.1016/j.seppur.2022.121371)

29. Li, C.; Yu, Z.; Cui, K.; Schmidt, J. R.; Sholl, D. S.; Lively, R. P. Assessment of Acid Gas Adsorption Selectivities in MIL-125-NH2. J. Phys. Chem. C 2022, 126, 21414-21425. (https://doi.org/10.1021/acs.jpcc.2c06518)

30. Park, S. J.; Wang, X.; Ball, M. R.; Proano, L.; Wu, Z.; Jones, C. W. CO2 methanation reaction pathways over unpromoted and NaNO3-promoted Ru/Al2O3 catalysts. Catal. Sci. Technol. 2022, 12, 4637-4652. (https://doi.org/10.1039/D2CY00515H)

31. Borne, I.; Simon, N.; Jones, C. W.; Lively, R. P. Design of Gas Separation Processes Using Type II Porous Liquids as Physical Solvents. Ind. Eng. Chem. Res. 2022, 61, 11908-11921. (https://doi.org/10.1021/acs.iecr.2c01943)

32. Jiang, X.; Lis, B. M.; Purdy, S. C.; Paladugu, S.; Fung, V.; Quan, W.; Bao, Z.; Yang, W.; He, Y.; Sumpter, B. G., et al. CO2-Assisted Oxidative Dehydrogenation of Propane over VOx/In2O3 Catalysts: Interplay between Redox Property and Acid–Base Interactions. ACS Catal. 2022, 12, 11239-11252. (https://doi.org/10.1021/acscatal.2c02099)

33. Mason, M. M.; Dixon, D. A. Electronic Structure Investigation of NO2 and NO Binding on Vanadium Oxides. J. Phys. Chem. A 2022, 126, 8618-8632. (https://doi.org/10.1021/acs.jpca.2c05340)

34. Moon, H. J.; Carrillo, J.-M.; Leisen, J.; Sumpter, B. G.; Osti, N. C.; Tyagi, M.; Jones, C. W. Understanding the Impacts of Support–Polymer Interactions on the Dynamics of Poly(ethyleneimine) Confined in Mesoporous SBA-15. J. Am. Chem. Soc. 2022, 144, 11664-11675. (https://doi.org/10.1021/jacs.2c03028)

35. Jiang, X.; Zhang, K.; Forte, M.; Cao, S.; Hanna, B.; Wu, Z. Recent advances in oxidative dehydrogenation of propane to propylene on boron-based catalysts. Catalysis Reviews 2022, 1-80. (https://doi.org/10.1080/01614940.2022.2113084)

36. Yuxiang Wang; Difan Zhang; Susan Sinnott. Computational Investigation of the Interaction of Multifunctionalized Porous Aromatic Frameworks with SO2. J. Phys. Chem. C 2022, 126, 16306-16314. (https://doi.org/10.1021/acs.jpcc.2c03403)

37. Victor Fung; P. Ganesh; Bobby Sumpter. Physically Informed Machine Learning Prediction of Electronic Density of States. Chem. Mater. 2022, 23, 4848-4855. (https://doi.org/10.1021/acs.chemmater.1c04252)